Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty.
نویسندگان
چکیده
The effect of blood viscosity on oxygen transport in a stenosed coronary artery during the postangioplasty scenario is studied. In addition to incorporating varying blood viscosity using different hematocrit (Hct) concentrations, oxygen consumption by the avascular wall and its supply from vasa vasorum, nonlinear oxygen binding capacity of the hemoglobin, and basal to hyperemic flow rate changes are included in the calculation of oxygen transport in both the lumen and the avascular wall. The results of this study show that oxygen transport in the postangioplasty residual stenosed artery is affected by non-Newtonian shear-thinning property of the blood viscosity having variable Hct concentration. As Hct increases from 25% to 65%, the diminished recirculation zone for the increased Hct causes the commencement of pO(2) decrease to shift radially outward by approximately 20% from the center of the artery for the basal flow, but by approximately 10% for the hyperemic flow at the end of the diverging section. Oxygen concentration increases from a minimum value at the core of the recirculation zone to over 90 mm Hg before the lumen-wall interface at the diverging section for the hyperemic flow, which is attributed to increased shear rate and thinner lumen boundary layer for the hyperemic flow, and below 90 mm Hg for the basal flow. As Hct increases from 25% to 65%, the average of pO(2,min) beyond the diverging section drops by approximately 25% for the basal flow, whereas it increases by approximately 15% for the hyperemic flow. Thus, current results with the moderate stenosed artery indicate that reducing Hct might be favorable in terms of increasing O(2) flux and pO(2,min), in the medial region of the wall for the basal flow, while higher Hct is advantageous for the hyperemic flow beyond the diverging section. The results of this study not only provide significant details of oxygen transport under varying pathophysiologic blood conditions such as unusually high blood viscosity and flow rate, but might also be extended to offer implications for drug therapy related to blood-thinning medication and for blood transfusion and hemorrhage.
منابع مشابه
Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery
A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...
متن کاملNumerical Modeling of Two-Layered Micropolar Fluid Through an Normal and Stenosed Artery
In the present work a two fluid model for blood flow through abnormally constrictedhuman artery (stenosed artery) has been developed. The model consists of a core region of suspensionof all erythrocytes assumed to be micro-polar fluid so as to include the micro-structural effects inaddition to the peripheral-layer viscosity effects, and a peripheral plasma layer free from cells of anykind of Ne...
متن کاملAn implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery
With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...
متن کاملMathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium
In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...
متن کاملOscillatory MHD Flow of Blood through an Artery with Mild Stenosis (RESEARCH NOTE)
The purpose of this work is to study the effect of oscillatory MHD blood flow in stenosed artery. The analytical and numerical results are obtained for oscillatory MHD blood flow, which is assumed to be a Newtonian fluid. It was also assumed that the surface roughness is of cosine shaped and the maximum height of roughness is negligible, compared with the radius of un-constricted tube. The flui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanical engineering
دوره 130 1 شماره
صفحات -
تاریخ انتشار 2008